2,268 research outputs found

    The Luminosity Function and Surface Brightness Distribution of HI Selected Galaxies

    Get PDF
    We measure the z=0 B-band optical luminosity function (LF) for galaxies selected in a blind HI survey. The total LF of the HI selected sample is flat, with Schechter parameters M*=-19.38_{-0.62}^{+1.02} + 5 log h mag and alpha=-1.03_{-0.15}^{+0.25}, in good agreement with LFs of optically selected late-type galaxies. Bivariate distribution functions of several galaxy parameters show that the HI density in the local Universe is more widely spread over galaxies of different size, central surface brightness, and luminosity than is the optical luminosity density. The number density of very low surface brightness (>24.0 mag/arcsec^2) gas-rich galaxies is considerably lower than that found in optical surveys designed to detect dim galaxies. This suggests that only a part of the population of LSB galaxies is gas rich and that the rest must be gas poor. However, we show that this gas-poor population must be cosmologically insignificant in baryon content. The contribution of gas-rich LSB galaxies (>23.0 mag/arcsec^2) to the local cosmological gas and luminosity density is modest (18_{-5}^{+6} and 5_{-2}^{+2} per cent respectively); their contribution to Omega_matter is not well-determined, but probably < 11 per cent. These values are in excellent agreement with the low redshift results from the Hubble Deep Field.Comment: Accepted for publication in MNRAS, 12 pages 6 figure

    Parsec-scale HI absorption structure in a low-redshift galaxy seen against a Compact Symmetric Object

    Full text link
    We present global VLBI observations of the 21-cm transition of atomic hydrogen seen in absorption against the radio source J0855+5751. The foreground absorber (SDSS~J085519.05+575140.7) is a dwarf galaxy at zz = 0.026. As the background source is heavily resolved by VLBI, the data allow us to map the properties of the foreground HI gas with a spatial resolution of 2pc. The absorbing gas corresponds to a single coherent structure with an extent >>35pc, but we also detect significant and coherent variations, including a change in the HI optical depth by a factor of five across a distance of ≀\leq6pc. The large size of the structure provides support for the Heiles & Troland model of the ISM, as well as its applicability to external galaxies. The large variations in HI optical depth also suggest that caution should be applied when interpreting TST_S measurements from radio-detected DLAs. In addition, the distorted appearance of the background radio source is indicative of a strong jet-cloud interaction in its host galaxy. We have measured its redshift (zz = 0.54186) using optical spectroscopy on the William Herschel Telescope and this confirms that J0855+5751 is a FRII radio source with a physical extent of <<1kpc and supports the previous identification of this source as a Compact Symmetric Object. These sources often show absorption associated with the host galaxy and we suggest that both HI and OH should be searched for in J0855+5751.Comment: 14 pages and 10 figures. Accepted for publication in MNRA

    Where is the Molecular Hydrogen in Damped Lyman-Alpha Absorbers?

    Full text link
    We show in this paper why molecular millimeter absorption line searches in DLAs have been unsuccessful. We use CO emission line maps of local galaxies to derive the H2 column density distribution function f(N_H2) at z=0. We show that it forms a natural extension to f(N_HI): the H2 distribution exceeds f(N_HI) at N_H ~ 10^22 cm^-2 and exhibits a power law drop-off with slope ~ -2.5. Approximately 97% of the H2 mass density rho_H2 is in systems above N_H2=10^21 cm^-2. We derive a value rho_H2 = 1.1 x 10^7 h_70 M_sun Mpc^-3, which is ~25% the mass density of atomic hydrogen. Yet, the redshift number density of H2 above this N_H2 limit is only ~3 x 10^-4, a factor 150 lower than that for HI in DLAs at z=0. Furthermore, we show that the median impact parameter between a N_H2>10^21 cm^-2 absorber and the centre of the galaxy hosting the H2 gas is only 2.5 kpc. Based on arguments related to the Schmidt law, we argue that H2 gas above this column density limit is associated with a large fraction of the integral star formation rate density. Even allowing for an increased molecular mass density at higher redshifts, the derived cross-sections indicate that it is very unlikely to identify the bulk of the molecular gas in present quasar absorption lines samples. We discuss the prospects for identifying this molecular mass in future surveys.Comment: 6 pages, 4 figures. Accepted for publication in the Astrophysical Journa

    Using 21-cm absorption surveys to measure the average HI spin temperature in distant galaxies

    Full text link
    We present a statistical method for measuring the average HI spin temperature in distant galaxies using the expected detection yields from future wide-field 21cm absorption surveys. As a demonstrative case study we consider a simulated all-southern-sky survey of 2-h per pointing with the Australian Square Kilometre Array Pathfinder for intervening HI absorbers at intermediate cosmological redshifts between z=0.4z = 0.4 and 11. For example, if such a survey yielded 10001000 absorbers we would infer a harmonic-mean spin temperature of T‟spin∌100\overline{T}_\mathrm{spin} \sim 100K for the population of damped Lyman α\alpha (DLAs) absorbers at these redshifts, indicating that more than 5050 per cent of the neutral gas in these systems is in a cold neutral medium (CNM). Conversely, a lower yield of only 100 detections would imply T‟spin∌1000\overline{T}_\mathrm{spin} \sim 1000K and a CNM fraction less than 1010 per cent. We propose that this method can be used to provide independent verification of the spin temperature evolution reported in recent 21cm surveys of known DLAs at high redshift and for measuring the spin temperature at intermediate redshifts below z≈1.7z \approx 1.7, where the Lyman-α\alpha line is inaccessible using ground-based observatories. Increasingly more sensitive and larger surveys with the Square Kilometre Array should provide stronger statistical constraints on the average spin temperature. However, these will ultimately be limited by the accuracy to which we can determine the HI column density frequency distribution, the covering factor and the redshift distribution of the background radio source population.Comment: 11 pages, 9 figures, 1 table. Proof corrected versio

    An HI survey of the Centaurus and Sculptor Groups - Constraints on the space density of low mass galaxies

    Get PDF
    We present results of two 21-cm HI surveys performed with the Australia Telescope Compact Array in the nearby Centaurus A and Sculptor galaxy groups. These surveys are sensitive to compact HI clouds and galaxies with HI masses as low as 3E+06 Msun, and are therefore among the most sensitive extragalactic HI surveys to date. The surveys consist of sparsely spaced pointings that sample approximately 2% of the groups' area on the sky. We detected previously known group members, but we found no new HI clouds or galaxies down to the sensitivity limit of the surveys. If the HI mass function had a faint end slope of alpha = 1.5 below M_{HI} = 10^{7.5} Msun in these groups, we would have expected ~3 new objects. Cold dark matter theories of galaxy formation predict the existence of a large number low mass DM sub-halos that might appear as tiny satellites in galaxy groups. Our results support and extend similar conclusions derived from previous HI surveys that a HI rich population of these satellites does not exist.Comment: Accepted for publication in A&

    Comparing Galaxies and Lyman Alpha Absorbers at Low Redshift

    Full text link
    A scenario is explored in which Lyman alpha absorbers at low redshift arise from lines of sight through extended galaxy disks, including those of dwarf and low surface brightness galaxies. A population of galaxies is simulated based upon observed distributions of galaxy properties, and the gas disks are modeled using pressure and gravity confinement. Some parameter values are ruled out by comparing simulation results with the observed galaxy luminosity function, and constraints may be made on the absorbing cross sections of galaxies. Simulation results indicate that it is difficult to match absorbers with particular galaxies observationally since absorption typically occurs at high impact parameters (>200 kpc) from luminous galaxies. Low impact parameter absorption is dominated by low luminosity dwarfs. A large fraction of absorption lines is found to originate from low surface brightness galaxies, so that the absorbing galaxy is likely to be misidentified. Low redshift Lyman alpha absorber counts can easily be explained by moderately extended galaxy disks when low surface brightness galaxies are included, and it is easily possible to find a scenario which is consistent with observed the galaxy luminosity function, with low redshift Lyman limit absorber counts, and with standard nucleosynthesis predictions of the baryon density, Omega_Baryon.Comment: 17 pages, 8 figures, accepted to the Astrophysical Journa

    The Weak Clustering of Gas-Rich Galaxies

    Full text link
    We examine the clustering properties of HI-selected galaxies through an analysis of the HI Parkes All-Sky Survey Catalogue (HICAT) two-point correlation function. Various sub-samples are extracted from this catalogue to study the overall clustering of HI-rich galaxies and its dependence on luminosity, HI gas mass and rotational velocity. These samples cover the entire southern sky Dec < 0 deg, containing up to 4,174 galaxies over the radial velocity range 300-12,700 km/s. A scale length of r_0 = 3.45 +/- 0.25 Mpc/h and slope of gamma = 1.47 +/- 0.08 is obtained for the HI-rich galaxy real-space correlation function, making gas-rich galaxies among the most weakly clustered objects known. HI-selected galaxies also exhibit weaker clustering than optically selected galaxies of comparable luminosities. Good agreement is found between our results and those of synthetic HI-rich galaxy catalogues generated from the Millennium Run CDM simulation. Bisecting HICAT using different parameter cuts, clustering is found to depend most strongly on rotational velocity and luminosity, while the dependency on HI mass is marginal. Splitting the sample around v_rot = 108 km/s, a scale length of r_0 = 2.86 +/- 0.46 Mpc/h is found for galaxies with low rotational velocities compared to r_0 = 3.96 +/- 0.33 Mpc/h for the high rotational velocity sample.Comment: Accepted for publication in the Astrophysical Journa

    The Balance of Dark and Luminous Mass in Rotating Galaxies

    Full text link
    A fine balance between dark and baryonic mass is observed in spiral galaxies. As the contribution of the baryons to the total rotation velocity increases, the contribution of the dark matter decreases by a compensating amount. This poses a fine-tuning problem for \LCDM galaxy formation models, and may point to new physics for dark matter particles or even a modification of gravity.Comment: 4 pages RevTeX. Phys. Rev. Letters, in pres
    • 

    corecore